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Experiments and a mathematical model of the instability of a linear vortex subject to 
deformation such that the streamlines are nearly ellipses with small eccentricities are 
described in the report. The tests were carried out with a draining-vortex type of flow in 
a cylindrical vessel with an elliptical cross section. The wavelengths and rotation rates 
of unstable modes were measured. An analytical model of the instability is proposed, based 
on linear theory using perturbation theory relative to the smallness of the deformation. 
According to this model, the mechanism of the observed instability is analogous to the insta- 
bility of a wave of finite amplitude in a three-wave interaction [i, 2]. The predictions of 
the model explain the experimental results fairly well. 

These tests can be considered as a generalization of the experiments of [3, 4] on the 
stability of initially rigid-body rotation inside an elliptical cylinder after it is stopped. 
The proposed theory of the phenomenon can also be considered as a generalization of that of 
[5], in which the question of the stability of a linear vortex in an unbouded fluid was in- 
vestigated. The core of the vortex was assumed to be subject to deformation such that the 
shape of its cross section is close to an ellipse with a small eccentricity. The method of 
solution of [5] is used below. A theory for the above-mentioned experiments was constructed 
in [3, 4] on the basis of the assumption that the vorticity is constant. In contrast to the 
present work, Galerkin's method was used. Thus, the results of [3-5] comprise two different 
limiting cases of the problem under consideration. 

i. Let us consider the plane stationary flow of an ideal fluid, consisting of a linear 
vortex with a core of constant vorticity, which is inside a cylindrical vessel. Outside the 
core the flow is potential. The shapes of streamlines and of the boundary of the normal 
cross section of the vessel differ little from circles. The quantity e << i serves as the 
measure of this difference. In the cylindrical coordinate system (r, 6, z) we assign the 
flow in the form of expansions in powers of the parameter e, 

U (r, 0) = - -  er s in 20 - 6 0  (e2), ] 

V (r, 0) r - -  ~r cos 20 § O (e~),~ 0 < r ~< R~ (0), 
P (r, O) = ( I /2 )r  2 -6 O (as), J 

O(r, 0) = 0 - -  (e/4)(r ~ - -  r -S) sin 20 6 O(e~), Rx(O) <~ r <~ Rz(O), 

where R1(e) and Ra(0) give the boundaries of the vorticity core and the vessel, 

RI(0 ) = t -6 (~/2) cos 20 -6 0(~2), 

B~(0) ---- b i t  A (s/4)B cos 20 -60 ( s~ ) ] .  

(i.i) 

(1.2) 

The radial and angular components of the velocity and pressure inside the vorticity core are 
designated as U, V, and P; ~ is the velocity potential outside this core; b is a constant 
equal to the vessel raidus in the zeroth approximation (b~ i); B = b 2 + b -2. A system of 
units is used in which the vorticity in the core equals zero while the unperturbed radius 
of the core equals one. The first two terms of the expansion of the exact solution obtained 
in [6] (cited in [5]) are written out explicitly in (i.i) and (1.2). These expansions can 
also be obtained by a direct solution of the equations of motion by successive approximations 
satisfying the conditions of n0npenetration at r = R=(0). 
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If terms of order r = and higher are discarded, the form of the function R2(0) coincides 

with the analogous representation for an ellipse with a small eccentricity. Let ao and bo 
(ao > bo) be the semiaxes of this ellipse. Then 

2 2 2 2~ ~ 2 2 a o - -  b o 
bZ=2aobo/ (ao+b2o) ,  e = ~ - ,  % - -  2 ~ ( 1 . 3 )  

a o + bo 

We note that the smallness parameter eo is determined only by the vessel geometry, while e 
is also determined by the ratio b of sizes of the vessel and the vortex core. 

Let us turn to the formulation of the problem of the stability of the flow (i.i), (1.2). 
The behavior of infinitely small perturbations is described by the linearized system of equa- 
tions of motion. For the region inside the vorticity core these equations have the form 

OU I OU 2Vv Op 
L u +-~-r u q T - - ~  v - -  . . . .  r Or ' 

aV u ~ av i (Uv + Vu) = ~ ap 
Lv-~-Y;-r + 7 - ~ - v  § 7 - -  7"-b-g ' 

L w  ---- Op Ou u I Ov Ow 
az '  or ~ - 7 + T N ' §  = 0 '  

(1.4) 

and for the region outside the core 

Am=o. (1.5) 

The fields of perturbations of the r, 0, and z components of the velocity, the pressure, 
and the velocity potential are designated as u, v, w, p, and ~, while L ~ 3/3t + U3/~r + 
(i/r)V3/3e. The boundary conditions for the perturbations are under the requirement of non- 
penetration at r = R2(~), the absence of singularities at r = 0, and the fulfillment of the 
kinematic and dynamic conditions at the boundary between the vorticity core and the potential 
stream. The form of these conditions is cumbersome and is not given in the present article. 

Using the independence of the main flow (i.i) from z and t, we take 

(u, v, w, p,  ~) = (u~, v~, w~, Pa, ~a)e ~t+i~ ( 1 . 6 )  

w i t h  t h e  a m p l i t u d e s  u a ,  v , w , p~ ,  avd  g ' a  d e p e n d e n t  o n l y  on r and  e .  A f t e r  s u b s t i t u t i n g  
, and  t h e  ~ o u n d a r y  c o n d i t i o n s ,  we o b t a i n  t h e  p r o b l e m  o f  d e t e r m i n i n g  ( 1 . 6 )  i n t o  ( 1 . 4 ) ,  ( 1 . 5 )  ~ 

the amplitude and the eigenvalues ~. If there exists at least one ~ with Re ~ > 0, then the 
flow is unstable. 

2. In the formulated statement the problem of determining the eigenvalues ~ is very com- 
plicated and will be solved by the method of successive approximations using the smallness of 
s. The calculations are made for the zeroth and first approximations. 

Presuming solutions through analytical functions of e (in the vicinity of ~ = 0), we 

write them in the series from (~ = O, i, 2, ...) 

(Ua, Ua, Wa, Pa,  ~a, ~) = ~ S~ (Uv, Uv, W~, p~, ~v, o~). (2.1) 
~ o  

I n  a d d i t i o n ,  we s e t  k = ko + r  The  l a t t e r  r e p r e s e n t a t i o n  was a d o p t e d  b e c a u s e  t h e  q u a n t i t y  
ko s a t i s f i e s  a c e r t a i n  s e t  o f  d i s p e r s i o n  r e l a t i o n s ,  and  c a s e s  o f  i n s t a b i l i t y  w i l l  c o r r e s p o n d  
t o  a d i s c r e t e  s e t  o f  v a l u e s  o f  k o .  The q u a n t i t y  kz a l l o w s  u s  t o  c o n s i d e r  v a l u e s  o f  k c l o s e  
t o  k o .  S u b s t i t u t i n g  ( 2 . 1 )  i n t o  ( 1 . 4 )  and  ( 1 . 5 )  and e q u a t i n g  t e r m s  w i t h  e q u a l  p o w e r s  o f  E 

y i e l d s  
L a u ~ - - 2 v ~ - !  - ~ = Glv, 

Or J 1 OPv --  G2.~ ' I 
Lov~ + 2u~ + "7- ~ 

I Lowv + ikopv = Gay, 

Ouv u~ , I Ov~ 
O'r " @ 7 -  -C r O0 ~ i k ~  = G4v'  , 

O < r < l ,  
(2.2) 
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i 8% i 82% 2 
~ -b r ~ -~ r z O0" kocpv = Gsv, 1 < r < b. 

Here Lo E ---too + ~/~8. For ~ = 0 the right sides Glo = 0 equal zero for all l ( 1  = i, 2, 3, 
4, 5). In equations of the first approximation (w = i) Gl~ contain linear functions of the 
zeroth approximation~ while for l = i~ 2, 3 they also contain the quantity ~ linearly: 

Gu ~- ~oauo + (rSuo/Or + %) sin 20 + (Ouo/80) cos 20. 

The kinematic and dynamic boundary conditions at r = ! for the zeroth and first approxima- 
tions have the form 

acpo aq~oor uo = O, Po + ~~ + ~ 0,.. 

= -}- v o sin 2(1 @ - r - .  cos 2@, 

p~ ? 0)0% -~ ao = - -  r + s in 20 + -~ 2 ~ - -  to o Or OrOO Or ] cos 20. 

(2.3) 

The condition of nonpenetration at the cylinder boundary at r = b leads to the conditions 

a~-----~~ = O, a% B a2~o 
Or Or ~ COS 20 ar 2 , 

w h i c h  a r e  " d i s p l a c e d "  as  u s u a l  f rom t h e  t r u e  b o u n d a r i e s  ( 1 . 2 )  t o  t h e  c l o s e  v i c i n i t i e s  o f  
them,  r = 1 and  r = b .  One more  c o n d i t i o n  c o n s i s t s  i n  t h e  f i n i t e n e s s  of  t h e  s o l u t i o n s  of  
any  a p p r o x i m a t i o n  a t  r = 0.  

3. L e t  u s  c o n s i d e r  t h e  p r o b l e m  ( 2 . 2 ) - ( 2 . 4 )  o f  t h e  z e r o t h  a p p r o x i m a t i o n .  I t s  s o l u t i o n s  
consist of inertial waves on a linear vortex with a circular core of constant vorticity. 
The vessel boundary is the circle r = b. These waves with b = ~ were studied long ago by 
Kelvin [7]. For the harmonic proportional to e im@, from (2.2) we obtain 

Po = ~Y,~(qmr)e ~r~~ for 0 < r < 1, 

% = o~W,n(kor)e ~m~ for I < r < b, 
(3.l) 

where ~ m ( x ) ~ - K m ( x ) -  • u ~ - K ~ ( k o b ) / I ~ ( k o b ) ;  K~(x)------~dKm(x)/dx; Jm, N m, K m, and 

I m are Bessel, Neumann, and modified Bessel functions of index m; a and ~ are complex 

constants; nm2 E _ k~Am/om ,2. Am ~ gm2 + 4; ~m E mo + im. The boundary condition at r = b and 
the absence of singularities at r = 0 are taken into account in (3.1). Drawing upon the 
boundary conditions (2.3} at r = 1 yields the dispersion relation between mo and ko, 

k J m T ~  (k0) - -  ~ W~ (k0) [o=N=J~ + 2imTm] - 0, ( 3 . 2 )  

where  Jm ~ Jm(nm ) .  The c o n s t a n t s  a and  B a l s o  p r o v e  to  b e  c o n n e c t e d .  One c a n  show t h a t  t h e  
s p e c t r u m  o f  imo g i v e n  by ( 3 . 2 )  i s  r e a l  and  m - -  2 < L~o < m + 2. 

4. For  t h e  p r o b l e m  ( 2 . 2 ) - ( 2 . 4 )  o f  t h e  f i r s t  a p p r o x i m a t i o n  t h e  form of  t h e  s o l u t i o n s  and  
t h e  v a l u e  o f  ~ :  c a n  be  o b t a i n e d  u s i n g  s i m p l e  b u t  cumbersome c a l c u l a t i o n s .  T h e i r  m e a n i n g  
comes down t o  t h e  d e t e r m i n a t i o n  of  c o r r e c t i o n s  to  t h e  i n e r t i a l  waves  ( 3 . 1 )  due  t o  t h e  d i f f e r -  
e n c e  f rom c i r c u l a r  g e o m e t r y .  The m o s t  c o m p l i c a t e d  s t e p  i s  t h e  s o l u t i o n  of  t h e  i n h o m o g e n e o u s  
e q u a t i o n s  ( 2 . 2 ) .  S i n c e  a n a l o g o u s  c a l c u l a t i o n s  w e r e  made i n  [5] f o r  t h e  c a s e  of  b = ~ ,  we p r e -  
s e n t  the results without dwelling on them. 

If the zeroth approximation is chosen in the form of the harmonic (3.1) with any m, 
then the quantity ~: is always purely imaginary. This corresponds to stability in the first 
approximation. More significant is the case of degeneration, when the perturbation of the 
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zeroth approximation, characterized by a frequency ~o and a wave vector ko, has the form of 
a superposition of several modes with different m (m~ and m2). For this case it is shown 

that if ml --m~ • then ~I is again purely imaginary. Instability (Re m: > 0) can occur 
only for m~ -- m2 = • This result is a consequence of the angular dependence (i.i) of the 
main flow appearing in the first parts of (2.2). From the form of the spectrum of the prob- 
lem in the zeroth approximation of Sec. 3 it follows that degeneration can only be two-fold 
in this case and "dangerous" perturbations in the zeroth approximation have the form 

Po := ~J,~+lOln+lr) e~(n+l)O ~-~ ~Jn-lO]n-lr)e~(n-1)O' 

~o = aWn+l(kor)e ~(n+l)O -t- ~Tn- l (kor)e  ~(n-~)O. 
(4.1) 

Here the functions po and q~o are determined at 0 < r < I and i < r < b, respectively; a, ~, 
B, and ~ are complex constants; a bar above denotes an independent quantity rather than the 
complex-conjugate operation; n is an arbitrary integer. 

Below we shall study instability only on the analytically simplest example of n = 0. 
This case corresponds to perturbations with bending of the axis of rotation and is the most 
important from the aspect of experimental practice. Results for n~=0 in the case of b = 1 
are presented in [8]. Let us make several comments about the values of (~o, ko) for which 
degeneration (4.1) is possible. The dispersion relations for the harmonics appearing in 
(4.1) for n = 0 are given by the substitution of m = • 1 into (3.2). By virtue of the de- 
generation, we consider the points of intersection of the curves (3.2) with m = 1 and m =-- 1 

in the plane of ko and imo. The intersecting families of these curves are concentrated in 
the band of --i < imo < I; their appearance for b = 1.5 is presented in Fig. I. The solid 
lines correspond to the harmonic m = 1 and the dashed lines to the harmonic m = -- i. Only 
the first three of the calculating set of curves for each harmonic are presented in Fig. i; 
the numbers of the curves correspond to the numbers of nulls of the function uo(r) over 0 < 
r~ b. Each point of intersection is designated by a pair of integers (q; s) corresponding 
to the numbers of intersecting curves of the families m = 1 and m = --i. As in [8], points 
with q = s are called principal points of intersection and points with q v as are called side 
points of intersection. The curves for m = • 1 are obtained from each other by reflection 
relative to the axis i~o = 0, so that the principal points of intersection lie on this axis. 
The points of the null curves corresponding to plane perturbation fields (ko + 0) are desig- 
nated as A and A' in Fig. i. The distance from A and A' to the origin of coordinates is 
i/b 2. For b = = these curves emerge from the point i~o = 0, ko = 0 and for b = 1 they emerge 
from the points i~o = • i, ko = 0. A list of the coordinates of the points of intersection 
for b = i, 1.2, 1.5, 2, 4, and 6 is given in Table i, in each cell of which the upper number 
gives the value of i~o and the lower gives the value of ko. 

Calculations of the quantity ml at the points of degeneration (i~o, ko) yield 

@i = -- ~ k0kl (c ~ ! @max ~ (4.2) 

where r E g/f; ~ E ~/~; ~2ma x E h~/fT; the various functions of the ~uanti!ies i~o, ko, and 
b, the form of which is given in the Appendix, are designated as f, f, g, g, h, and ~. It 
follows from (4.2) that instability (Re ~I > 0) can occur if 
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TABLE 1 

Points \ b  [ 
of inter-~ I 1 t,2 t,5 2 t 6 
s e c t i o n \ l  

(1; 1) 0,0 0,0 0,0 0,0 0,0 0,0 
1,579 t,245 0,878 0,573 0,229 0,140 

(2; 2) 0,0 0,0 0,0 0,00 0,0 0,0 
3,286 2,76t 2,552 2,508 2,505 2,505 

(3; 3) 0,0 0,0 0,0 0,0 0,0 0,0 
5,06t 4,457 4,356 4,349 4,349 4,349 

(1; 2) 0,292 0,297 0,342 0,386 0,406 0,406 
2,203 1,789 t,488 1,324 1,264 1,264 

(t; 3) 0,435 0,449 0,495 0,522 0,528 0,528 
2,630 2,t85 t,907 1,778 t,750 1,750 

(2; 3) 0,t65 
4,046 

0,t74 
3,481 

0,185 
3,323 

0,186 
3,301 

0,t87 
3,300 

0,187 
3,300 

TABLE 2 

Points \ b 
of inter- N i t,2 1,5 2 4 6 
SeCt ion 

(t; 1) 0,53t 0,522 0,506 0,502 0,529 0,548 
0,958 O,Stl 0,748 0,781 1,157 i,576 

(2; 2) 0,554 0,549 0,556 0,567 0,57t 0,571 
2,325 2,045 2,047 2,t22 2,t45 2,145 

(3; 3) 0,559 0,560 0,567 0,559 0,569 0,569 
3,701 3,409 3,487 3.5i7 3,518 3,5t8 

(I; 2) O,ill 0,059 0,004 0,014 0,003 0,004 

(t; 3) 0,1t4 0,043 0,001 0,00t 0,004 0,004 

(2; 3) 0,t6t 0,033 0,005 0,007 . 0,007 0,007 

~ . =  > - [ ( t /2)  kok~ (c - -  7)p.  

Since c and ~ are purel~ imaginary quantities, the largest growth decrement ~ = ~max is 
reached for k~ = O. In this case the following interval of wave numbers proves unstable: 

[kll < kmax ~ 12~max/(~(c --~))1" ( 4 . 3 )  

The v a l u e  o f  I k l l  = kma x c o r r e s p o n d s  t o  t h e  b o u n d a r y  o f  t h e  i n s t a b i l i t y  r e g i o n  a t  w h i c h  R e '  
~ = 0. The v a l u e s  o f  ~max a t  a l l  t h e  p o i n t s  o f  i n t e r s e c t i o n  p r e s e n t  i n  F i g .  1 a r e  p r e s e n t e d  
i n  T a b l e  2.  Fo r  t h e  p r i n c i p a l  p o i n t s  o f  i n t e r s e c t i o n  t h e  u p p e r  number  i n  e a c h  c e l l  o f  t h e  
t a b l e  g i v e s  t h e  v a l u e  o f  ~max and t h e  l o w e r  number  g i v e s  kma x .  I t  i s  s e e n  t h a t  a l l  t h e  
p o i n t s  o f  i n t e r s e c t i o n  c o r r e s p o n d  t o  u n s t a b l e  modes .  At  t h e  same t i m e ,  t h e  g r o w t h  d e c r e m e n t s  
a t  t h e  p r i n c i p a l  p o i n t s  o f  i n t e r s e c t i o n  (imo = 0) a r e  one  t o  two o r d e r s  o f  m a g n i t u d e  l a r g e r  
t h a n  a t  t h e  s i d e  p o i n t s .  On t h e  b a s i s  o f  ( 4 . 3 )  t h e  same t h i n g  can  be  s a i d  a b o u t  t h e  w i d t h s  
k of the instability zones. On this basis, observations of nonrotating disturbances 
( ~ a x  

imo = 0) s h o u l d  be  e x p e c t e d  i n  t h e  e x p e r i m e n t s .  

The i n s t a b i l i t y  c o r r e s p o n d i n g  t o  t h e  p o i n t  o f  i n t e r s e c t i o n  (1 ;  1) p r o v e s  t o  be t h e  m o s t  
i m p o r t a n t  i n  t h e  e x p e r i m e n t s .  I n  F i g .  2 we p r e s e n t  t h e  d e p e n d e n c e  on b o f  t h e  h a l f - w a v e -  
l e n g t h  ~ ~ ~ / k o b ,  t h e  w i d t h  Xmax ~ ( 2 k l / k o B ) ~  o f  t h e  zone  o f  u n s t a b l e  w a v e l e n g t h s ,  and t h e  
g r o w t h  d e c r e m e n t  ~max a t  t h i s  p o i n t ,  Here  t h e  l e n g t h s  a r e  n o r m a l i z e d  t o  t h e  q u a n t i t y  b ,  i . e . ,  
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they are measured in units of the unperturbed vessel radius; %max is defined so that unstable 
modes lie in the interval from ~ -- eoXma x to ~ + Co%max [see (1.3)]. Since ~max = 0.5 for 
i < b < 6 (see Fig. 2), the real decrement e0hnax = (2eo/B)~ma x decreases as i/b = as b in- 
creases. We also note that ko § 0 as b § ~. In this case the wavelength ~ does not ap- 
proach a finite limit but grows slowly but without limit, so that ~i = In ko -- 1/4 [see 
(3.1) ]. 

5. A number of tests were made on recording the described instability. We used an in- 
stallation consisting of a water-filled, round, cylindrical vessel 120 cm high and 18 cm in 
diameter, placed on a revolving table. Rotation takes place about the axis of symmetry. A 
rigidly fastened insert in the form of a thin-walled elliptical cylinder made from a thin 
celluloid sheet was placed inside the vessel. The major axis of the ellipse with a length 
2ao coincided with the vessel diameter while the minor axis was varied in the range of 2bo = 
13.5-17 cm. The flow inside the elliptical cylinder was observed through the transparent 
wails. A typical experiment had the following look. The vessel containing water, filled 
to the level L + ~L, was set into a state of rigid-body rotation with a velocity ~. Then a 
hole with a diameter d located at the center of the bottom of the vessel was opened. The 
forming linear vortex (like a vortex in a bath) was made visible by the introduction of dye. 
When the level fell to the height L the hole was covered and after a time At the vessel was 
abruptly stopped. The interval At was needed to reorganize the flow from a draining vortex 
to a linear vortex with a zero axial velocity component. After stopping, the vortex remains 
straight in certain ranges of L, while in others one observes instability of the bending type 
(Fig. 3). Two parameters of an unstable mode were recorded -- its rotational velocity imo 
and length ~. We present the results of a series of tests with ~ = 0.625 rps, ~o = 0.17, 
6L = 15 cm, d = 3 mm, and At = 2 sec. 

The sequence of pictures in Fig. 3 corresponds to times of 0, 12, and 25 sec after stop- 
ping with L = 90 cm. Pictures of the instability for different L (50, 80, and 92 cm) are 
given in Fig. 4. It was found that in all cases the bends in the vortex core are at rest 
in the laboratory coordinate system, only varying in amplitude. This corresponds to i~o = 0, 
i.e., just the case of the principal points of intersection (see Sec. 4). Slight differences 
of i~o from zero were observed only for bends of large amplitude, when the vortex core almost 
touched the vessel walls. The results of measurements of the ranges of L for unstable modes 
are given in the left half of Fig. 5. The hatched sections give the values of L/b in which 
instability is observed. Each instability zone is designated by a number no = i, 2, 3, 4 
corresponding to a harmonic noX. A half-wave is observed for no = i, a whole wave for no = 
2, etc. Data of [3, 4] on the instability of initially rigid~body rotation after stopping 
a vessel with the same go are presented in the right half of Fig. 5 for comparison. 

Direct measurements of the radius a of the vortex core and the vorticity ~c in it for 
this series of tests give values of a = 2 cm and ~^ = 34 i/sec. The measurement methods 
consisted in recording the motion of particles at ~he free surface and the coloring of the 
core. The instability zones (I; i) theoretically predicted for these parameters are plotted 
on the L/b axis (see Fig. 5) with heavy line segments (no = i), 2, 3). It is seen that the 
theory correctly reflects the main result of these tests, consisting in an increase in the 
wavelengths X of unstable modes compared with the case of initially rigid-body rotation 
[3, 4]. At the same time, the theoretically predicted value of % (see Fig. 5) is somewhat 
larger than the measured value, while the width %max of the instability zone is somewhat 
smaller. 

Tests were also made with other values of the parameters so, d, ~, 6L, and At. The 
results obtained are similar to those presented. The instability is manifested more and 
more weakly with changes in these parameters resulting in an increase in b. In theory this 
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corresponds to a decrease in the growth decrement C~ma x ~ i/b 2. In tests with b~10 there 
is no instability at all~ 

Let us make several more comments. 

I. The growth decrement is almost the same for all the principal points of intersection. 
To explain the dominant role of the (i; I) instability one must evidently resort to nonlinear 
theory. The nonlinear restrictions for the other instabilities corresponding to principal 
points are intuitively clear: For them to occur the vortex lines in neighboring cylindrical 
layers must turn in opposite directions, whereas the (i; I) instability yields a turning 
of the axis of rotation for the entire flow as a whole. 

2. Calculations of the shifts in the principal points of intersection of the dispersion 
curves show that the difference between theory and experiment can be explained by the nonpo- 
tential nature of the flow surrounding the core occurring in the experiments. Allowance for 
its nonpotential nature evidently also results in the observed broadening of the instability 
zones. 

3. The above model can explain the deviations of the theoretical predictions of wave- 
lengths of unstable modes from the experimental results which occur in [3, 4]. For this one 
must consider that stopping the vessel results in the rapid reorganization of the velocity 
profile through turbulent mixing caused by centrifugal instability. Therefore, a constant 
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vorticity occurs not in the entire flow but only in some core of it, outside of which the 
vorticity is considerably lower. Such flow reorganization can only result in an increase in 

(see Fig. 2), which is needed to achieve agreement in [3, 4], 

4. The experimental setup differs from the theoretical model of Secs. 1 and 2 by the 
presence of a free surface. Control tests with a rigid cover showed that, at least for a 
setup like that of [3, 4] with initially rigid-body rotation, in the range of 0.25 rps < fl < 
1.25 rps the influence of the free surface on the instability parameters was weak. 

5. The extraneous operation of covering the hole is present in the experimental setup. 
It was performed to satisfy the assumption (Sec. I) that the axial velocity component of the 
main flow equals zero. When the vessel is stopped without covering the hole one also ob- 
serves instability of the draining vortex like that presented in Figs. 3 and 4. A more com- 
plicated theory is needed there, however. 

APPENDIX 

The following representations are valid for side points of intersection (i~o, ko): 

, - -::o + - . :. § ( ,. - ,o ). 

h ~  Pa X +  - , io)oQ~SH ~ t avr - - - ~  , - p J 1  -~- - 7 % (~7o - 7 ~ ) +  7 7  t -  ~ S o  -~: ~ (~,~ - ~)  ],1. 

(A. i) 

In addition to each of the quantities o, n, ~, A, Jm, Nm, A, HI, H~, H3, Pl, P=, P3, 0~, f, 
g, and h there is another quantity denoted by the same letter with a bar above. The ana- 
lytical equations connecting them remain current if each of the quantities without a bar 
(with a bar) is replaced by the quantity denoted by the same letter with a bar (without a 
bar) and the imaginary unit i is replaced by --i. We take o E ~; ~ E ~_~; q ~ n~; ~ ~ ~_~; 

A E A~; ~ ~ A-~; ~ ~ o + 2i; ~ ~ ~(ko); ~r E (d/dr)~(kor)Ir=~; Q ~ 2~k~/(o~); Jm and N m are 
Bessel and Neumann functions of the argument n; Jm and Nm are those of the argument ~; 
A ~ (I/A)(--ODo + oJ~); 

4:o H 1 - -  ~ r J~ 

M (b) I 1 (ko)" 
Pl--/0(1)- ' k ' koI1 ( 0 b) 

i ~ [  ~F(b)/ ,  @o) 1; 
P~-------f~+T % +  koZi(kob ) 

1o (r) ~ -  Ko (kor) -~- • (kor); 

F (r) ~ - -  i T r r  (kor) ~- r i-- ~ (kor); 

F o r  t h e  p r i n c i p a l  p o i n t s  o f  i n t e r s e c t i o n  (~o = O) 
e q u a t i o n  

H2 --_ A r:o; H~ - -  T~N~ + --K" ( -  a~lN~ 4-7~N~); 
ff2~ 1 

' k M (b) x~ (o). 
p.~ - -  M (t) xl (kob) 

a [ BF(t)  l l ( k o ) ] ;  
p ,  --= - ~  2 F  ( t )  

& (kob) 
M (r) ~ 1o (r) -- kor~Fo (kor); 

1 

S ~ y t2Jo (-~t) J~ Olt) dt. 
0 

t h e  q u a n t i t i e s  ko a r e  c a l c u l a t e d  f r o m  t h e  

% : ~  + (t,'3)w(~do + : , )  = o, n = VSko. 

The expressions for f and g follow from (A.I): 

- 2~ [ , I ~ [(2~12, i )d~  2~Jo]] / = - -  ] = -~- ,  - -  2~lYo~F~ -i- ~ r - -  , 

_ ( 3 )  
g = g = P l ( ]I J 0 ~ -- ] 1  ) I k 0 ~ 3 _ ~ J 1  - -  ~ d o �9 [ 3,',o ~Z- :~ - ~ :0~ 

At the same time, the quantity h in (A.I) does not yield the correct limit as mo § 0. This 
is connected with the fact that important use is made of ~o~0 in the intermediate calcula- 
tions. Separate calculations in which ~o = 0 is taken from the very start yield 
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h = ~  :--- P~(qYo + d~) + Pfl '~ - - (1 /~) (3~iJo  - -  "I~)Y~ - -  (q/4)(Yo ~ ~ ' l ' f t )% 

1 F BF (b) l l  (i~o) . o~IJ" +- ~',. -i- F ( t )  ' , p8 --~---- .-F .... 
,0~ ----- -~- L - V 1  (~0 b) " 211 (kob) J" 
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CO~WECTIVE MOTIONS OF A FLUID IN A NEARLY SPHERICAL 

CAVITY WHEN HEATED FROM BELOW 

Yu. K. Bratukhin and L. N. Maurin UDC 531.529.2 

io It is known [i] that a nonuniformly heated fluid can be in mechanical equilibrium 
only if the temperature gradient in it is vertical and has a constant value. Such a situa- 
tion can occur, for example, in a spherical cavity in a solid mass with a vertical (downward) 
temperature gradient specified at infinity. 

Let us consider the effect of a nearly spherical cavity on convective stability. Sup- 
pose the equation of the surface of the cavity is r = 1 + sP2 (:) cos ~, where the Pe(m)(~) 
are associated Legendre polynomials, r, @, ~ are polar coordinates, the radius Ro of the 
undeformed sphere is taken as unity, and s << I. This special shape of the cavity was chosen 
since p=(1) cos ~ is one of the large-scale spherical harmonics whose presence in the spec- 
trum of functions specifying the shape of the actual cavity leads to distortion of the iso- 
therms in the fluid, and consequently to convective motion for arbitrarily small temperature 
gradients. 

We write the equations of steady-state convection in dimensionless form, choosing as 
units of velocity, pressure, and temperature gBAR~/~, pgBAR~, and ARo respectively, where 
~, B, and ~ are respectively the density, coefficient of thermal expansion, and kinematic 
viscosity, g = gk is the acceleration due to gravity, and A = Ak is the constant temperature 
gradient at infinity. Then the equations and boundary conditions for the dimensionless ve- 
locity v, pressure p, and temperatures TI and T= in the solid mass in the fluid for steady- 
state motion take the form [!] 
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